[ad_1]
The remnants of a supernova explosion that looks like an ‘arm reaching into space’ is made up of light that first reached Earth 1,700 years ago, a new study discovered.
This would have been during the third century when the Mayan empire was flourishing, the Jin dynasty ruled China, and England was a Roman territory.
However, by cosmic standards the supernova remnant formed by the explosion, called MSH 15-52, is one of the youngest in the Milky Way galaxy.
The supernova that resulted in the unusual pattern also created an ultra-dense, magnetised star called a pulsar, according to astronomers from North Carolina State University in Raleigh.
They used the NASA Chandra X-ray Observatory to calculate the speed the gas and dust within this pattern was moving, finding it was between nine and 11 million miles per hour – down from the 30 million mph when it first exploded from a star.
The remnants of a supernova explosion that looks like an ‘arm reaching into space’ is made up of light that first reached Earth 1,700 years ago, a new study discovered
The supernova that resulted in the unusual pattern also created an ultra-dense, magnetised star called a pulsar, according to astronomers from North Carolina State University in Raleigh
Using Chandra data allowed them to not only estimate when the light reached the Earth – 1,700 years ago – but also learn how the blast wave from an exploding star formed the pattern.
Since the explosion, the supernova remnant – which is made of debris from the shattered star, shaped by the explosion’s blast wave – have been changing as they expand outward into space from the original explosive event.
Notably, the supernova remnant and surrounding X-ray nebula now resemble the shape of fingers and a palm reaching out from an arm in space.
Previously, astronomers had released a full Chandra view of the ‘hand,’ but the study explores how quickly the hand is moving as it strikes a cloud of gas called RCW 89.
The inner edge of this cloud forms a gas wall located about 35 light-years from the centre of the explosion, they discovered.
To track the motion the team used Chandra data from 2004, 2008, and then a combined image from observations taken in late 2017 and early 2018.
The explosion’s blast wave, which is located near one of the fingertips, is moving at almost 9 million miles per hour, with some debris moving at 11 million miles per hour.
This is seen with clumps of magnesium and neon that likely formed in the star before it exploded and shot into space once the star blew up.
While these are startling high speeds, they actually represent a slowing down of the remnant, according to the researchers.
They estimate that to reach the farthest edge of RCW 89, material would have to travel on average at almost 30 million miles per hour.
This estimate is based on the age of the supernova remnant and the distance between the centre of the explosion and RCW 89.
This difference in speed implies that the material has passed through a low-density cavity of gas and then been significantly decelerated by running into RCW 89.
The exploded star likely lost part or all of its outer layer of hydrogen gas in a wind, forming such a cavity, before exploding.
They compared it to another well-known supernova remnant Cassiopeia A (Cas A), which is much younger at an age of about 350 years. About 30 per cent of massive stars that collapse to form supernovas are of this type.
Since the explosion, the supernova remnant – which is made of debris from the shattered star, shaped by the explosion’s blast wave – have been changing as they expand outward into space from the original explosive event
Notably, the supernova remnant and surrounding X-ray nebula now resemble the shape of fingers and a palm reaching out from an arm in space
The clumps of debris seen in the 1,700-year-old supernova remnant could be older versions of those seen in Cas A at optical wavelengths in terms of their initial speeds and densities, according to the researchers.
This means that these two objects may have the same underlying source for their explosions, which is likely related to how stars with stripped hydrogen layers explode.
However, astronomers do not understand the details of this yet and will continue to study this possibility.
The findings have been published in the Astrophyiscal Journal Letters.
[ad_2]